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Molecular property prediction has been widely considered 
as one of the most critical tasks in computational drug and 
materials discovery, as many methods rely on predicted 

molecular properties to evaluate, select and generate molecules1,2. 
With the development of deep neural networks (DNNs), molecu-
lar representation learning exhibits a great advantage over feature 
engineering-based methods, which has attracted increasing research 
attention to tackle the molecular property prediction problem.

Graph neural networks (GNNs) for molecular representation 
learning have recently become an emerging research area, which 
regard the topology of atoms and bonds as a graph, and propagate 
messages of each element to its neighbours3–6. However, one major 
obstacle to hinder the successful application of GNNs (and DNNs) 
in molecule property prediction is the scarity of labelled data, which 
is also a common research challenge in natural language process-
ing7,8 and computer vision9,10 communities. Inspired by the success of 
self-supervised learning, recent studies4,11 start to use large-scale unla-
belled molecules in a self-supervised methodology to pre-train the 
molecular representation and then use a small number of labelled mol-
ecules to fine tune the models, achieving substantial improvements.

Existing self-supervised learning techniques for GNNs4,11 only 
consider the topology information of the molecules, neglecting the 
molecular geometry, that is, the three-dimensional spatial structure 
of a molecule. These works conduct self-supervised learning by 
masking and predicting in nodes, edges or contexts in the topol-
ogy4,11. Yet these tasks only enable the model to learn the laws of 
molecular graph such as which atom/group could be connected to 
a double bond, and lack the ability to learn the molecular geom-
etry knowledge, which plays an important role in determining mol-
ecules’ physical, chemical and biological activities. For example, the 
water solubility (a critical metric of drug-likeness) of the two mol-
ecules illustrated in Fig. 1 is different due to their differing geom-
etries, even though they have the same topology. Cis-platin and 
trans-platin are another example of molecules with the same topol-
ogy but different geometries: cis-platin is a popular chemotherapy 

drug used to treat a number of cancers, whereas trans-platin has no 
cytotoxic activity12.

Although incorporating geometric information into graph 
architectures to benefit some molecular property estimation tasks 
has attracted research attention in recent years13–17, there is still a 
demand to utilize the molecular geometry information to develop 
a self-supervised learning paradigm for property prediction. We 
argue that adopting the self-supervised learning to estimate the 
geometry can contribute to facilitating the model’s capacity in 
predicting various properties. Self-supervised learning can take 
advantage of the large-scale unlabelled molecules with coarse 
three-dimensional spatial structures to better learn the molecular 
representation, where the coarse three-dimensional spatial struc-
tures can be efficiently calculated by cheminformatics tools such as 
RDKit (https://www.rdkit.org/). By geometry-level self-supervised 
learning, the pre-trained model is capable of inferring the molecular 
geometry by itself.

To this end, we propose a novel geometry-enhanced molecular 
representation learning method (GEM). First, to make the message 
passing sensitive to geometries, we model the effects of atoms, bonds 
and bond angles simultaneously by designing a geometry-based 
GNN architecture (GeoGNN). The architecture consists of two 
graphs: the first graph regards the atoms as nodes and the bonds 
as edges, whereas the second graph regards the bonds as nodes and 
the bond angles as edges. Second, we pre-train the GeoGNN to 
learn the chemical laws and the geometries from large-scale mol-
ecules with coarse three-dimensional spatial structures, designing 
various geometry-level self-supervised learning tasks. To verify the 
effectiveness of the proposed GEM, we compared it with several 
state-of-the-art (SOTA) baselines on 15 molecular property predic-
tion benchmarks, among which GEM achieves 14 SOTA results.

Our contributions can be summarized as follows:

•	 We propose a novel geometry-based GNN to encode both the 
topology and geometry information of molecules.
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•	 We design multiple geometry-level self-supervised learning 
tasks to learn the molecular spatial knowledge from large-scale 
molecules with coarse spatial structures.

•	 We evaluated GEM thoroughly on various molecular property 
prediction datasets. Experimental results demonstrate that 
GEM considerably outperforms competitive baselines on mul-
tiple benchmarks.

Preliminaries
Graph-based molecular representation. A molecule consists 
of atoms and the neighbouring atoms are connected by chemical 
bonds, which can be represented by a graph G = (V , E), where V  is 
a node set and E is an edge set. An atom in the molecule is regarded 
as a node v ∈ V and a chemical bond in the molecule is regarded as 
an edge (u, v) ∈ E connecting atoms u and v.

Graph neural networks are message-passing neural networks18, 
making them useful for predicting molecular properties. Following 
the definitions of the previous GNNs19, the features of a node v are 
represented by xv and the features of an edge (u, v) are represented 
by xuv. Taking node features, edge features and the graph structure as 
inputs, a GNN learns the representation vectors of the nodes, where 
the representation vector of a node v is denoted by hv. A GNN itera-
tively updates a node’s representation vector by aggregating the mes-
sages from the node’s neighbours. Finally, the representation vector hG 
of the entire graph can be obtained by pooling over the representation 
vectors {hv} of all the nodes at the last iteration. The representation 
vector of the graph hG is utilized to estimate the molecular properties.

Pre-training methods for GNNs. In the molecular representation 
learning community, recently several works4,11,20 have explored the 
power of self-supervised learning to improve the generalization abil-
ity of GNN models on downstream tasks. They mainly focus on two 
kinds of self-supervised learning tasks: the node-level (edge-level) 
tasks and the graph-level tasks.

The node-level self-supervised learning tasks are devised to 
capture the local domain knowledge. For example, some studies 
randomly mask a portion of nodes or sub-graphs and then predict 
their properties by the node/edge representation. The graph-level 
self-supervised learning tasks are used to capture the global infor-
mation, like predicting the graph properties by the graph represen-
tation. Usually, the graph properties are domain-specific knowledge, 
such as experimental results from biochemical assays or the exis-
tence of molecular functional groups.

the GeM framework
This section introduces the details of our proposed 
geometry-enhanced molecular representation learning method 

(GEM), which includes two parts: a novel geometry-based GNN 
and various geometry-level self-supervised learning tasks.

GeoGNN. We propose a GeoGNN that encodes molecular geom-
etries by modelling the atom–bond–angle relations, distinguishing 
them from traditional GNNs, which only consider the relationship 
between atoms and bonds.

For a molecule, we denote the atom set as V , the bond set as E, 
and the bond angle set as A. We introduce atom–bond graph G and 
bond–angle graph H for each molecule, as illustrated in Fig. 2a. The 
atom–bond graph is defined as G = (V , E), where atom u ∈ V is 
regarded as the node of G and bond (u, v) ∈ E as the edge of G, con-
necting atoms u and v. Similarly, the bond–angle graph is defined as 
H = (E ,A), where bond (u, v) ∈ E is regarded as the node of H and 
bond angle (u, v, w) ∈ A as the edge of H, connecting bonds (u, v) 
and (v, w). We use xu as the initial features of atom u, xuv as the initial 
features of bond (u, v), and xuvw as the initial features of bond angle 
(u, v, w). The atom–bond graph G and the bond–angle graph H—as 
well as atom features, bond features and bond angle features—are 
taken as the inputs of GeoGNN.

GeoGNN learns the representation vectors of atoms and bonds 
iteratively. For the kth iteration, the representation vectors of atom 
u and bond (u, v) are denoted by hu and huv, respectively. To con-
nect the atom–bond graph G and bond–angle graph H, the rep-
resentation vectors of the bonds are taken as the communication 
links between G and H. In the first step, the bonds’ representation 
vectors are learned by aggregating messages from the neighbouring 
bonds and corresponding bond angles in the bond–angle graph H. 
In the second step, the atoms’ representation vectors are learned by 
aggregating messages from the neighbouring atoms and the corre-
sponding bonds in the atom–bond graph G. Finally, the molecular 
representation hG is obtained by pooling over the atoms’ represen-
tations. See the Methods for details on the GeoGNN architecture.

Geometry-level self-supervised learning tasks. To further boost the 
generalization ability of GeoGNN, we propose three geometry-level 
self-supervised learning tasks to pre-train GeoGNN: (1) the bond 
lengths prediction; (2) the bond angles prediction; (3) the atomic 
distance matrices prediction. The bond lengths and bond angles 
describe the local spatial structures, whereas the atomic distance 
matrices describe the global spatial structures.

Local spatial structures. Bond lengths and angles are the most 
important molecular geometrical parameters: the former is the dis-
tance between two joint atoms in a molecule, reflecting the bond 
strength between the atoms, whereas the latter is the angle connect-
ing two consecutive bonds, including three atoms, describing the 
local spatial structure of a molecule.

To learn the local spatial structures, we construct self-supervised 
learning tasks that predict bond lengths and angles. First, for a mol-
ecule, we randomly select 15% of atoms. For each selected atom, 
we extract the one-hop neighbourhood of this atom, including the 
adjacent atoms and bonds, as well as the bond angles formed by that 
selected atom. Second, we mask the features of these atoms, bonds 
and bond angles in the one-hop neighbourhood. The representation 
vectors of the extracted atoms and bonds at the final iteration of 
GeoGNN are used to predict the extracted bond lengths and bond 
angles. Self-supervised learning tasks based on bond lengths and 
bond angles are shown on left and middle of Fig. 2b. We design a 
regression loss function that penalizes the error between the pre-
dicted bond lengths/angles and the labels, whose details can be 
referred to in the Methods. The task of predicting the local spatial 
structures can be seen as a node-level self-supervised learning task.

Global spatial structures. Except for the tasks for learning local 
spatial structures, we also design the atomic distance matrices  
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Fig. 1 | comparison between two stereoisomers with the same topology but 
different geometries. The two chlorine atoms are on different sides in trans-
1,2-dichloroethene (left) but the same side in cis-1,2-dichloroethene (right).
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prediction task for learning the global molecular geometry. We con-
struct the atomic distance matrix for each molecule based on the 
three-dimensional coordinates of the atoms. We then predict the 
elements in the distance matrix, shown on the right of Fig. 2b.

Note that for two molecules with the same topological struc-
tures, the spatial distances between the corresponding atoms could 
vary greatly; thus, for a molecule, rather than take predicting atomic 
distance matrix as a regression problem, we take it as a multi-class 
classification problem by projecting the atomic distances into 30 
bins with equal stride. Details on the designed loss function can be 
found in the Methods. The task predicting the bond lengths can be 
seen as a special case of the task predicting the atomic distances. The 
former focuses more on the local spatial structures, whereas the lat-
ter focuses more on the distribution of the global spatial structures.

To pre-train GeoGNN, we consider both the local spatial struc-
tures and global spatial structures for each molecule by summing up 
the corresponding loss functions.

experiments
To thoroughly evaluate the performance of GEM, we compare it 
with multiple SOTA methods on multiple benchmark datasets from 
MoleculeNet21 with various molecular property prediction tasks, 
such as physical, chemical and biophysics.

Pre-training settings. Datasets. We use 20 million unlabelled mol-
ecules sampled from Zinc1522, a public access database that contains 
purchasable drug-like compounds, to pre-train GeoGNN. We ran-
domly sample 90% of the molecules for training and the remaining 
for evaluation.

Self-supervised learning task settings. We utilize geometry- and 
graph-level tasks to pre-train GeoGNN. For the former, we utilize 
the Merck molecular force field (MMFF94)23 function in RDKit to 
obtain the simulated three-dimensional coordinates of the atoms in 
the molecules. The geometric features of the molecule—including 
bond lengths, bond angles and atomic distance matrices—are cal-
culated by the simulated three-dimensional coordinates. We predict 

the molecular fingerprints for the graph-level tasks. The graph-level 
tasks can be formulated as a set of binary classification problems, 
where each bit of the fingerprints corresponds to one binary classifi-
cation problem. Two kinds of fingerprints are used: (1) the molecu-
lar access system (MACCS) key24 and (2) the extended-connectivity 
fingerprint (ECFP)25.

Molecular property prediction settings. Datasets and splitting 
method. We conduct experiments on multiple molecular bench-
marks from the MoleculeNet21, including both classification and 
regression tasks26–31. Following the previous work11, we split all the 
datasets with scaffold split32, which splits molecules according to the 
their scaffold (molecular substructure). Scaffold split is a more chal-
lenging splitting method and can better evaluate the generalization 
ability of the models on out-of-distribution data samples.

GNN architecture. We use the AGGREGATE and COMBINE func-
tions defined in the graph isomorphism network (GIN)19. Residual 
connections33, layer normalization34 and graph normalization35 are 
incorporated into GIN to further improve the performance. We also 
use the average pooling as the READOUT function to obtain the 
graph representation.

Evaluation metrics. As suggested by the MoleculeNet21, we use the 
average ROC-AUC36 as the evaluation metric for the classification 
datasets. ROC-AUC (area under the receiver operating characteris-
tic curve) is used to evaluate the performance of binary classifica-
tion tasks, for which higher is better. With respect to the regression 
datasets, we use root mean square error (RMSE) for FreeSolv37, 
ESOL38 and Lipo39, whereas we use mean average error (MAE) for 
QM740, QM841 and QM942. We execute four independent runs for 
each method and report the mean and the standard deviation of 
the metrics.

Baselines. We compare the proposed method with various com-
petitive baselines. D-MPNN43, AttentiveFP44, SGCN16, DimeNet17 
and HMGNN6 are the GNNs without pre-training, among which, 
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Fig. 2 | Overall architecture of GeM. a, In atom–bond graph G, the chemical bonds are regarded as edges, connecting the atoms. In the bond–angle 
graph H, the bond angles are regarded as edges, and a bond angle connects two chemical bonds and three atoms. The double-dash arcs indicate the 
correspondence between the elements in the two graphs. b, Demonstration of geometry-level self-supervised learning tasks. The black circle represents 
the selected atom, whereas the grey circles in graph G represent the neighbouring masked atoms, the grey lines in graph G and the grey ovals in graph H 
represent the neighbouring masked bonds, and the grey lines in graph H represent the neighbouring masked bond angles.
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SGCN, DimeNet and HMGNN incorporate three-dimensional 
geometry information; N-Gram45, PretrainGNN11 and GROVER4 
are the methods with pre-training. N-Gram assembles the node 
embeddings in short walks in the graph and then leverages 
Random Forest or XGBoost to predict the molecular properties. 
PretrainGNN implements several types of self-supervised learn-
ing tasks, among which we report the best result. GROVER inte-
grates GNN into Transformer with two self-supervised tasks, and 
we report the results of GROVERbase and GROVERlarge with different 
network capacity.

Experimental results. Overall performance. The overall perfor-
mance of GEM along with other methods is summarized in Table 1. 
We have the following observations: (1) GEM achieves SOTA results 
on 14 out of 15 datasets. On the regression tasks, GEM achieves 
an overall relative improvement of 8.8% on average compared with 
the previous SOTA results in each dataset. On the classification 
tasks, GEM achieves an overall relative improvement of 4.7% on 
the average ROC-AUC compared with the previous SOTA result 
from D-MPNN. (2) GEM achieves more substantial improvements 
on the regression datasets than the classification datasets. We guess 
that the regression datasets focus on predicting the quantum chemi-
cal properties, which are highly correlated to molecular geometries.

Contribution of GeoGNN. We investigate the effect of GeoGNN 
without pre-training on the regression datasets, including the  

properties of quantum mechanics and physical chemistry, which are 
highly correlated to molecular geometries. GeoGNN is compared 
with multiple GNN architectures, including: (1) the commonly 
used GNN architectures, GIN19, GAT46 and GCN47; (2) recent works 
incorporating three-dimensional molecular geometry, SGCN16, 
DimeNet17 and HMGNN6; (3) the architectures specially designed 
for molecular representation, D-MPNN43, AttentiveFP44 and 
GTransformer4. From Table 2, we can conclude that GeoGNN con-
siderably outperforms other GNN architectures on all the regres-
sion datasets since GeoGNN incorporates geometrical parameters 
even though the three-dimensional coordinates of the atoms are 
simulated. The overall relative improvement is 7.9% compared with 
the best results of previous methods.

Contribution of geometry-level tasks. To study the effect of the pro-
posed geometry-level self-supervised learning tasks, we apply dif-
ferent types of self-supervised learning tasks to pre-train GeoGNN 
on the regression datasets. In Table 3, ‘Without pre-train’ denotes 
the GeoGNN network without pre-training, ‘Geometry’ denotes 
our proposed geometry-level tasks, ‘Graph’ denotes the graph-level 
task that predicts the molecular fingerprints and ‘Context’4 denotes 
a node-level task that predicts the atomic context. In general, the 
methods with geometry-level tasks are better than that without it. 
Furthermore, ‘Geometry’ performs better than ‘Geometry + Graph’ 
in the regression tasks, which may due to the weak connection 
between molecular fingerprints and the regression tasks.

Table 1 | Overall performance for regression tasks and classification tasks

regression (lower is better)

rMSe Mae

Dataset eSOL FreeSolv Lipo QM7 QM8 QM9

No. molecules 1,128 642 4,200 6,830 21,786 133,885

No. prediction tasks 1 1 1 1 12 12

D-MPNN 43 1.050(0.008) 2.082(0.082)
a0.683(0.016) 103.5(8.6) 0.0190(0.0001) 0.00814(0.00001)

attentiveFP44 a0.877(0.029)
a2.073(0.183) 0.721(0.001)

a72.0(2.7)
a0.0179(0.0001)

a0.00812(0.00001)

N-GramrF
45 1.074(0.107) 2.688(0.085) 0.812(0.028) 92.8(4.0) 0.0236(0.0006) 0.01037(0.00016)

N-GramXGB
45 1.083(0.082) 5.061(0.744) 2.072(0.030) 81.9(1.9) 0.0215(0.0005) 0.00964(0.00031)

PretrainGNN11 1.100(0.006) 2.764(0.002) 0.739(0.003) 113.2(0.6) 0.0200(0.0001) 0.00922(0.00004)

GrOVerbase
4 0.983(0.090) 2.176(0.052) 0.817(0.008) 94.5(3.8) 0.0218(0.0004) 0.00984(0.00055)

GrOVerlarge
4 0.895(0.017) 2.272(0.051) 0.823(0.010) 92.0(0.9) 0.0224(0.0003) 0.00986(0.00025)

GeM 0.798(0.029) 1.877(0.094) 0.660(0.008) 58.9(0.8) 0.0171(0.0001) 0.00746(0.00001)

classification (higher is better)

Dataset Bace BBBP clintox SiDer tox21 toxcast HiV MuV PcBa avg

No. molecules 1,513 2,039 1,478 1,427 7,831 8,575 41,127 93,087 437,929

No. prediction 
tasks

1 1 2 27 12 617 1 17 128

D-MPNN43 0.809(0.006)
a0.710(0.003)

a0.906(0.006) 0.570(0.007) 0.759(0.007) 0.655(0.003) 0.771(0.005) 0.786(0.014)
a0.8620.001

a0.759

attentiveFP44 0.784(0.022) 0.643(0.018) 0.847(0.003) 0.606(0.032) 0.761(0.005) 0.637(0.002) 0.757(0.014) 0.766(0.015) 0.801(0.014) 0.734

N-GramrF
45 0.779(0.015) 0.697(0.006) 0.775(0.040)

a0.668(0.007) 0.743(0.004)
b— 0.772(0.001) 0.769(0.007)

b— —

N-GramXGB
45 0.791(0.013) 0.691(0.008) 0.875(0.027) 0.655(0.007) 0.758(0.009)

b— 0.787(0.004) 0.748(0.002)
b— —

PretrainGNN11 a0.845(0.007) 0.687(0.013) 0.726(0.015) 0.627(0.008)
a0.781(0.006)

a0.657(0.006)
a0.799(0.007)

a0.813(0.021) 0.860(0.001) 0.755

GrOVerbase
4 0.826(0.007) 0.700(0.001) 0.812(0.030) 0.648(0.006) 0.743(0.001) 0.654(0.004) 0.625(0.009) 0.673(0.018) 0.765(0.021) 0.716

GrOVerlarge
4 0.810(0.014) 0.695(0.001) 0.762(0.037) 0.654(0.001) 0.735(0.001) 0.653(0.005) 0.682(0.011) 0.673(0.018) 0.830(0.004) 0.722

GeM 0.856(0.011) 0.724(0.004) 0.901(0.013) 0.672(0.004) 0.781(0.001) 0.692(0.004) 0.806(0.009) 0.817(0.005) 0.866(0.001) 0.791

The SOTa results are shown in bold. Standard deviations are in brackets. aThese cells indicate the previous SOTa results. bas N-Gram on ToxCast and PCBa is too time-consuming, we were not able to 
finish on time.
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Pre-trained representations visualization. To intuitively observe the 
representations that the self-supervised tasks (without downstream 
fine-tuning) have learned, we visualize the representations by map-
ping them to the two-dimensional space by t-SNE algorithm48, 
whose details can be found in the Supplementary Information. The 
Davies Bouldin index49 is calculated to measure the separation of 
clusters. The lower the Davies Bouldin index, the better the separa-
tion of the clusters. Here we test whether the pre-training methods 
are able to distinguish molecules with valid geometry (generated 
from RDKit) from molecules with invalid geometry (random gen-
erated). We randomly select 1,000 molecules from ZINC. For each 
molecule, we generate the valid and invalid geometry. As shown 
in Fig. 3a, both the graph-level and geometry-level pre-training 
methods can better distinguish the valid geometry from invalid 
geometry compared to not pre-trained. Besides, the geometry-level 
pre-training can further decrease the Davies Bouldin Index to 2.63, 
compared with 7.88 of the graph-level.

Impact of the quality of geometry. To investigate the impact of the 
quality of geometry, we first compare GeoGNN, which adopts the 
default force field MMFF, with GeoGNN (UFF), which adopts 
the universal force field (UFF)50, on dataset QM9. GeoGNN and 
GeoGNN (UFF) achieve similar performance, as shown in Fig. 3c. 
The impact of more precise three-dimensional coordinates pro-
vided by dataset QM9 (calculated by DFT51) is also investigated. 
GeoGNN (precise 3D) achieves a great improvement of about 12% 
compared with the baseline GeoGNN.

Furthermore, Fig. 3b shows the representation visuals for dif-
ferent qualities of molecular geometry. GeoGNN (without 3D) is a 
variant of GeoGNN that masks all the geometry features with zeros, 
GeoGNN is the baseline that utilizes coarse three-dimensional 

coordinates, and GeoGNN (precise 3D) utilizes precise 3D coor-
dinates generated by DFT. We equally divide 2,000 molecules from 
QM9 into two clusters, one with high HOMO–LUMO gaps and the 
other with low HOMO–LUMO gaps. We test the ability of differ-
ent models to distinguish these two group of molecules. Visually, 
we observe that GeoGNN can better separate the clusters than 
GeoGNN (without 3D), whereas GeoGNN (precise 3D) works bet-
ter than GeoGNN. The differences in Davies Bouldin index support 
the observations.

Contributions of atom–bond and bond–angle graphs. We evalu-
ate the contributions of the atom–bond and bond–angle graphs in 
GeoGNN on dataset QM9, as shown in Fig. 3c. Atom–bond graph 
utilizes the atom–bond graph only and pool over the representations 
of the atoms to estimate the properties, whereas bond–angle graph 
utilizes the bond–angle graph only and pools over the representa-
tions of bonds. GeoGNN, which consists of both the atom–bond 
and bond–angle graphs, performs better than the above two vari-
ants, indicating that both the atom–bond and bond–angle graphs 
contribute to the performance.

related work
Molecular representation. Current molecular representa-
tions can be categorized into three types: molecular fingerprints, 
sequence-based representations and graph-based representations.

Molecular fingerprints. Molecular fingerprints such as ECFP25 
and MACCS24 are molecular descriptors. Fingerprints are hand-
crafted representations—widely used by traditional machine learn-
ing methods3,52–54—that encode a molecule into a sequence of bits 
according to the molecules’ topological substructures. Although 

Table 2 | Performance of different GNN architectures for regression tasks

rMSe Mae

Method eSOL FreeSolv Lipo QM7 QM8 QM9

GIN19 1.067(0.051) 2.346(0.122) 0.757(0.022) 110.3(7.2) 0.0199(0.0002) 0.00886(0.00005)

GaT46 1.556(0.085) 3.559(0.050) 1.021(0.029) 103.0(4.4) 0.0224(0.0005) 0.01117(0.00018)

GCN47 1.211(0.052) 3.174(0.308) 0.773(0.007) 100.0(3.8) 0.0203(0.0005) 0.00923(0.00019)

D-MPNN43 1.050(0.008) 2.082(0.082) 0.683(0.016) 103.5(8.6)
a0.0190(0.0001) 0.00814(0.00009)

attentiveFP44 a0.877(0.029)
a2.073(0.183)

a0.721(0.001)
a72.0(2.7) 0.0179(0.0001)

a0.00812(0.00001)

GTransformer4 2.298(0.118) 4.480(0.155) 1.112(0.029) 161.3(7.1) 0.0361(0.0008) 0.00923(0.00019)

SGCN16 1.629(0.001) 2.363(0.050) 1.021(0.013) 131.3(11.6) 0.0285(0.0005) 0.01459(0.00055)

DimeNet17 0.878(0.023) 2.094(0.118) 0.727(0.019) 95.6(4.1) 0.0215(0.0003) 0.01031(0.00076)

HMGNN6 1.39(0.073) 2.123(0.179) 2.116(0.473) 101.6(3.2) 0.0249(0.0004) 0.01239(0.0001)

GeoGNN 0.832(0.010) 1.857(0.071) 0.666(0.015) 59.0(3.4) 0.0173(0.0004) 0.00746(0.00003)

The SOTa results are shown in bold. aThe cells in grey indicate the previous SOTa results.

Table 3 | Performance of GeoGNN with different pre-training strategies for regression tasks

rMSe Mae

Pre-train Method eSOL FreeSolv Lipo QM7 QM8 QM9

Without pre-train 0.832(0.010) 1.857(0.071) 0.666(0.015) 59.0(3.4) 0.0173(0.0004) 0.00746(0.00003)

Context + Graph 0.837(0.027) 1.982(0.098) 0.664(0.011) 72.1(2.3) 0.0171(0.0003) 0.00748(0.00005)

Graph 0.815(0.025) 1.950(0.069) 0.665(0.012) 63.1(2.8) 0.0174(0.0002) 0.00750(0.00001)

Geometry 0.825(0.017) 1.701(0.147) 0.660(0.021) 58.2(0.5) 0.0171(0.0001) 0.00734(0.00003)

Geometry + Graph 0.798(0.029) 1.876(0.094) 0.660(0.008) 58.9(0.8) 0.0171(0.0001) 0.00746(0.00001)

The SOTa results are shown in bold.
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fingerprints can represent the presence of the substructures in the 
molecules, they suffer from bit collisions and vector sparsity, limit-
ing their representation power.

Sequence-based representations. Some studies3,55 take SMILES 
strings56 that describe the molecules by strings as inputs, and lever-
age sequence-based models such as Recurrent Neural Networks and 
Transformer57,58 to learn the molecular representations; however, it 
is difficult for sequence-based methods to comprehend the syntax 
of SMILES. For example, two adjacent atoms may be far apart in the 
text sequence. Besides, a small change in a SMILES string can lead 
to a large change in the molecular structure.

Graph-based representations. Many works3–6,18 have showcased the 
great potential of graph neural networks on modelling molecules by 
taking each atom as a node and each chemical bond as an edge. For 
example, AttentiveFP44 proposes to extend graph attention mecha-
nism to learn aggregation weights. Meanwhile, a group of studies 
have tried to incorporate three-dimensional geometry information: 
(1)13–15 take partial geometry information as features, such as atomic 
distances; (2)16 proposed a spatial graph convolution that uses rela-
tive position vectors between atoms as input features; (3)17 proposed 
a message passing scheme based on bonds and transform messages 
from angles.

Pre-training for GNNs. Self-supervised learning7–10,59 has achieved 
great success in natural language processing, computer vision and 
other domains; it trains unlabelled samples in a supervised man-
ner to alleviate the overfitting issue and improve data utilization 
efficiency. Some studies4,11 recently applied self-supervised learn-
ing methods to GNNs for molecular property prediction to over-
come the insufficiency of the labelled samples. These works learn 
the molecular representation vectors by exploiting the node- and 
graph-level tasks, where the node-level tasks learn the local domain 
knowledge by predicting the node properties and the graph-level 
tasks learn the global domain knowledge by predicting biological 
activities. Although existing self-supervised learning methods can 

boost the generalization ability, they neglect the spatial knowledge 
that is strongly related to the molecular properties.

conclusion
Efficient molecular representation learning is crucial for molecular 
property prediction. Existing works that apply pre-training meth-
ods for molecular property prediction fail to utilize the molecular 
geometries described by bonds, bond angles and other geometri-
cal parameters. To this end, we design a geometry-based GNN and 
multiple geometry-level self-supervised learning methods cap-
ture the molecular spatial knowledge. Extensive experiments were 
conducted to verify the effectiveness of GEM, comparing it with 
multiple competitive baselines. GEM considerably outperforms 
other methods on multiple benchmarks. In the future we will try 
to adopt the proposed framework to more molecular tasks, espe-
cially the protein–ligand affinity prediction task that requires lots of 
three-dimensional samplings.

Methods
Preliminary for GNNs. Graph neural networks is a message passing neural 
networks. More concretely, given a node v, its representation vector h(k)

v  at the kth 
iteration is formalized by

a(k)v = AGGREGATE(k)
(

{(h(k−1)
v , h(k−1)

u , xuv|u ∈ N (v))} ,

h(k)
v = COMBINE(k)(h(k−1)

v , a(k)v ).
(1)

where N (v) is the set of neighbours of node v, AGGREGATE(k) is the aggregation 
function for aggregating messages from a node’s neighbourhood, and COMBINE(k) 
is the update function for updating the node representation. We initialize h(0)

v  by 
the feature vector of node v, that is, h(0)

v = xv.
READOUT function is introduced to integrate the nodes’ representation 

vectors at the final iteration so as to gain the graph’s representation vector hG, 
which is formalized as

hG = READOUT(h(K)
v |v ∈ V), (2)

where K is the number of iterations. In most cases, READOUT is a permutation 
invariant pooling function, such as summation and maximization. The graph’s 
representation vector hG can then be used for downstream task predictions.
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Fig. 3 | Visualizations and ablation studies. a, a pre-trained representation visualization comparing different self-supervised methods. The valid geometry 
cluster contains molecules with geometry generated by rDKit, whereas the invalid geometry cluster contains those with randomly generated geometry. 
b, a representation visualization comparing different qualities of geometries. The high cluster contains molecules with high HOMO–LuMO gaps, whereas 
the low cluster contains those with low HOMO–LuMO gaps. c, Mae difference (the lower the better) on QM9 between baseline GeoGNN with other 
GeoGNN variants.
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GeoGNN. The GeoGNN architecture encodes the molecular geometries by 
modelling two graphs: the atom–bond and bond–angle graphs, under which the 
representation vectors of atoms and bonds are learned iteratively. More concretely, 
the representation vectors of atom u and bond (u, v) for the kth iteration are 
denoted by hu and huv, respectively. We initialize h(0)

u = xu and h(0)
uv = xuv.

Given bond (u, v), its representation vector h(k)
uv  at the kth iteration is 

formalized by

a(k)uv = AGGREGATE(k)
bond−angle

(

{(h(k−1)
uv , h(k−1)

uw , xwuv) : w ∈ N (u)}

∪{(h(k−1)
uv , h(k−1)

vw , xuvw) : w ∈ N (v)}
)

,

h(k)
uv = COMBINE(k)

bond−angle(h
(k−1)
uv , a(k)uv ).

(3)

Here, N (u) and N (v) denote the neighbouring atoms of u and v, respectively; 
{(u, w) : w ∈ N (u)} ∪ {(v, w) : w ∈ N (v)} are the neighbouring bonds 
of (u, v). AGGREGATEbond−angle is the message aggregation function and 
COMBINEbond−angle is the update function for bond–angle graph H. In this way, the 
information from the neighbouring bonds and the corresponding bond angles 
is aggregated into a(k)uv . The representation vector of bond (u, v) is then updated 
according to the aggregated information. With the learned representation vectors 
of the bonds from bond–angle graph H, given an atom u, its representation vector 
h(k)
u  at the kth iteration can be formalized as

a(k)u = AGGREGATE(k)
atom−bond({(h

(k−1)
u , h(k−1)

v , h(k−1)
uv ) : v ∈ N (u)}),

h(k)
u = COMBINE(k)

atom−bond(h
(k−1)
u , a(k)u ).

(4)

Similarly, N (u) denotes the neighbouring atoms of atom u, AGGREGATEatom−bond 
is the message aggregation function for atom–bond graph G, and COMBINEatom−

bond is the update function. For atom u, messages are aggregated from the 
neighbouring atoms and the corresponding bonds. Note that, the messages of the 
bonds are learned from the bond–angle graph H. The aggregated messages then 
update the representation vector of atom u.

The representation vectors of the atoms at the final iteration are integrated to 
gain the molecular representation vector hG by the READOUT function, which is 
formalized as

hG = READOUT(h(K)
u |u ∈ V), (5)

where K is the number of iterations. The molecule’s representation vector hG is used 
to predict the molecular properties.

Geometry-level self-supervised learning tasks. Local spatial structures. The 
self-supervised tasks for local spatial information are designed to learn two 
important molecular geometrical parameters, the bond lengths and the bond 
angles. The loss functions of the self-supervised tasks are defined as follows:

Llength(E) = 1
|E|

∑

(u,v)∈E

(flength(h(K)
u , h(K)

v ) − luv)
2;

Langle(A) = 1
|A|

∑

(u,v,w)∈A

(fangle(h(K)
u , h(K)

v , h(K)
w ) − ϕuvw)

2.
(6)

Here, Llength(E) is the loss function for bond lengths, with E as the set of bonds; 
Langle(A) is the loss function of bond angles, with A as set of angles; K is the 
number of iterations for GeoGNN; flength(⋅) is the network predicting the bond 
lengths; and fangle(⋅) is the network predicting the bond angles; luv denotes the length 
of the bond connecting atoms u and v; ϕuvw denotes the degree of the bond angle 
connecting bonds (u, v) and (v, w).

Global spatial structures. The self-supervised tasks for global spatial information 
are designed to learn the atomic distance matrices between all atom pairs. Each 
element of the distance matrices is the three-dimensional distance between 
two atoms. We use duv to denote the distance between two atoms u and v in the 
molecule. For the atomic distance prediction task, we clip the distance with the 
range from 0 Å to 20 Å and project it into 30 bins with equal stride. The loss 
function of the self-supervised tasks is defined as follows:

Ldistance(V) =
1

|V|2

∑

u,v∈V

−binT(duv) · log(fdistance(h(K)
u , h(K)

v )), (7)

where V is the set of atoms, fdistance(⋅) is the network predicting the distribution of 
atomic distances, the bin(⋅) function is used to discretize the atomic distance duv 
into a one-hot vector and log(·) is the logarithmic function.

Data availability
The self-supervised data used in our study are publicly available in ZINC  
(https://zinc.docking.org/tranches/home/), whereas the downstream benchmarks 
can be downloaded from MoleculeNet (https://moleculenet.org/datasets-1).

code availability
The source code of this study providing the geometry-based GNN and several 
geometry-level self-supervised learning methods is freely available at GitHub 
(https://github.com/PaddlePaddle/PaddleHelix/tree/dev/apps/pretrained_
compound/ChemRL/GEM) to allow replication of the results. The version used for 
this publication is available at https://doi.org/10.5281/zenodo.5781821.
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